3.1298 \(\int \frac{(a+b \tan (e+f x))^{5/2}}{(c+d \tan (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=292 \[ \frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d f \left (c^2+d^2\right )^2 \sqrt{c+d \tan (e+f x)}}-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}-\frac{i (a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (c-i d)^{5/2}}+\frac{i (a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (c+i d)^{5/2}} \]

[Out]

((-I)*(a - I*b)^(5/2)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]]
)])/((c - I*d)^(5/2)*f) + (I*(a + I*b)^(5/2)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*S
qrt[c + d*Tan[e + f*x]])])/((c + I*d)^(5/2)*f) - (2*(b*c - a*d)^2*Sqrt[a + b*Tan[e + f*x]])/(3*d*(c^2 + d^2)*f
*(c + d*Tan[e + f*x])^(3/2)) + (2*(b*c - a*d)*(6*a*c*d + b*(c^2 + 7*d^2))*Sqrt[a + b*Tan[e + f*x]])/(3*d*(c^2
+ d^2)^2*f*Sqrt[c + d*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.56762, antiderivative size = 292, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {3565, 3649, 3616, 3615, 93, 208} \[ \frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d f \left (c^2+d^2\right )^2 \sqrt{c+d \tan (e+f x)}}-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d f \left (c^2+d^2\right ) (c+d \tan (e+f x))^{3/2}}-\frac{i (a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (c-i d)^{5/2}}+\frac{i (a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (c+i d)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^(5/2)/(c + d*Tan[e + f*x])^(5/2),x]

[Out]

((-I)*(a - I*b)^(5/2)*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Tan[e + f*x]]
)])/((c - I*d)^(5/2)*f) + (I*(a + I*b)^(5/2)*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*S
qrt[c + d*Tan[e + f*x]])])/((c + I*d)^(5/2)*f) - (2*(b*c - a*d)^2*Sqrt[a + b*Tan[e + f*x]])/(3*d*(c^2 + d^2)*f
*(c + d*Tan[e + f*x])^(3/2)) + (2*(b*c - a*d)*(6*a*c*d + b*(c^2 + 7*d^2))*Sqrt[a + b*Tan[e + f*x]])/(3*d*(c^2
+ d^2)^2*f*Sqrt[c + d*Tan[e + f*x]])

Rule 3565

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - D
ist[1/(d*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*(
m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3
*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Gt
Q[m, 2] && LtQ[n, -1] && IntegerQ[2*m]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3616

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3615

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[((a + b*x)^m*(c + d*x)^n)/(A - B*x), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(a+b \tan (e+f x))^{5/2}}{(c+d \tan (e+f x))^{5/2}} \, dx &=-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 \int \frac{\frac{1}{2} \left (b^3 c^2+3 a^3 c d-5 a b^2 c d+7 a^2 b d^2\right )+\frac{3}{2} d \left (3 a^2 b c-b^3 c-a^3 d+3 a b^2 d\right ) \tan (e+f x)+\frac{1}{2} b \left (2 a d (2 b c-a d)+b^2 \left (c^2+3 d^2\right )\right ) \tan ^2(e+f x)}{\sqrt{a+b \tan (e+f x)} (c+d \tan (e+f x))^{3/2}} \, dx}{3 d \left (c^2+d^2\right )}\\ &=-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right )^2 f \sqrt{c+d \tan (e+f x)}}+\frac{4 \int \frac{\frac{3}{4} d (b c-a d) \left (a^3 c^2-3 a b^2 c^2+6 a^2 b c d-2 b^3 c d-a^3 d^2+3 a b^2 d^2\right )-\frac{3}{4} d (b c-a d) \left (2 a^3 c d-6 a b^2 c d-3 a^2 b \left (c^2-d^2\right )+b^3 \left (c^2-d^2\right )\right ) \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{3 d (b c-a d) \left (c^2+d^2\right )^2}\\ &=-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right )^2 f \sqrt{c+d \tan (e+f x)}}+\frac{(a-i b)^3 \int \frac{1+i \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{2 (c-i d)^2}+\frac{(a+i b)^3 \int \frac{1-i \tan (e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{2 (c+i d)^2}\\ &=-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right )^2 f \sqrt{c+d \tan (e+f x)}}+\frac{(a-i b)^3 \operatorname{Subst}\left (\int \frac{1}{(1-i x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (c-i d)^2 f}+\frac{(a+i b)^3 \operatorname{Subst}\left (\int \frac{1}{(1+i x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (c+i d)^2 f}\\ &=-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right )^2 f \sqrt{c+d \tan (e+f x)}}+\frac{(a-i b)^3 \operatorname{Subst}\left (\int \frac{1}{i a+b-(i c+d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{(c-i d)^2 f}+\frac{(a+i b)^3 \operatorname{Subst}\left (\int \frac{1}{-i a+b-(-i c+d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{(c+i d)^2 f}\\ &=-\frac{i (a-i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{(c-i d)^{5/2} f}+\frac{i (a+i b)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{(c+i d)^{5/2} f}-\frac{2 (b c-a d)^2 \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right ) f (c+d \tan (e+f x))^{3/2}}+\frac{2 (b c-a d) \left (6 a c d+b \left (c^2+7 d^2\right )\right ) \sqrt{a+b \tan (e+f x)}}{3 d \left (c^2+d^2\right )^2 f \sqrt{c+d \tan (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 5.12741, size = 341, normalized size = 1.17 \[ \frac{(b+i a) \left (\frac{3 (-a+i b)^{3/2} \tan ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{-a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{(c-i d)^{5/2}}+\frac{\sqrt{a+b \tan (e+f x)} ((3 a d+b (c-4 i d)) \tan (e+f x)+4 a c-i a d-3 i b c)}{(c-i d)^2 (c+d \tan (e+f x))^{3/2}}\right )-\frac{(-b+i a) \left (\frac{\sqrt{a+b \tan (e+f x)} ((3 a d+b (c+4 i d)) \tan (e+f x)+4 a c+i a d+3 i b c)}{(c+d \tan (e+f x))^{3/2}}-\frac{3 (a+i b)^{3/2} \tan ^{-1}\left (\frac{\sqrt{-c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{\sqrt{-c-i d}}\right )}{(c+i d)^2}}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Tan[e + f*x])^(5/2)/(c + d*Tan[e + f*x])^(5/2),x]

[Out]

((I*a + b)*((3*(-a + I*b)^(3/2)*ArcTan[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[-a + I*b]*Sqrt[c + d*Tan
[e + f*x]])])/(c - I*d)^(5/2) + (Sqrt[a + b*Tan[e + f*x]]*(4*a*c - (3*I)*b*c - I*a*d + (b*(c - (4*I)*d) + 3*a*
d)*Tan[e + f*x]))/((c - I*d)^2*(c + d*Tan[e + f*x])^(3/2))) - ((I*a - b)*((-3*(a + I*b)^(3/2)*ArcTan[(Sqrt[-c
- I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/Sqrt[-c - I*d] + (Sqrt[a + b*Tan[e
 + f*x]]*(4*a*c + (3*I)*b*c + I*a*d + (b*(c + (4*I)*d) + 3*a*d)*Tan[e + f*x]))/(c + d*Tan[e + f*x])^(3/2)))/(c
 + I*d)^2)/(3*f)

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{ \left ( a+b\tan \left ( fx+e \right ) \right ) ^{{\frac{5}{2}}} \left ( c+d\tan \left ( fx+e \right ) \right ) ^{-{\frac{5}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^(5/2)/(c+d*tan(f*x+e))^(5/2),x)

[Out]

int((a+b*tan(f*x+e))^(5/2)/(c+d*tan(f*x+e))^(5/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(5/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(5/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**(5/2)/(c+d*tan(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^(5/2)/(c+d*tan(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError